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Rod groups (monoperiodic subgroups of the 3-periodic space groups) are

considered as a special case of the commensurate line groups (discrete symmetry

groups of the three-dimensional objects translationally periodic along a line).

Two different factorizations of line groups are considered: (1) The standard

L = T(a)F used in crystallography for rod groups; F is a finite system of

representatives of line-group decomposition in cosets of 1-periodic translation

group T(a); (2) L = ZP used in the theory of line groups; Z is a cyclic generalized

translation group and P is a finite point group. For symmorphic line groups (five

line-group families of 13 families) the two factorizations are equivalent: the

cyclic group Z is a monoperiodic translation group and P is the point group

defining the crystal class. For each of the remaining eight families of non-

symmorphic line groups the explicit correspondence between rod groups and

relevant geometric realisations of the corresponding line groups is established.

The settings of rod groups and line groups are taken into account. The results

are presented in a table of 75 rod groups listed (in international and factorized

notation) by families of the line groups according to the order of the principal

axis q (q = 1, 2, 3, 4, 6) of the corresponding isogonal point group.

1. Introduction

Rod groups appear in crystallography as 1-periodic subgroups

of space groups with orders of principal rotation axes equal to

1, 2, 3, 4 and 6. There are 75 rod groups and relevant trans-

formations are explicitly tabulated in Kopský & Litvin (2002).

Independent study of polymers, or, in more rigorous terms,

general 1-periodic three-dimensional objects, stimulated the

analysis of 1-periodic symmetry groups that could include

rotation axes of arbitrary order. Such groups received the

collective name ‘line groups’. There are infinitely many line

groups and their classification may be performed in a number

of ways (Šijački et al., 1972; Vujičić et al., 1977; Damnjanović &

Milosěvić, 2010). Rod groups constitute a subset of the set of

line groups, but, due to their origin the enumeration, notations

and geometric realisations of rod groups possess certain

specifics as compared with the line groups. The major task of

this paper is to establish the explicit correspondence between

rod groups and relevant geometric realisations of the corre-

sponding line groups to lay a bridge between crystallography

and the symmetry description of stereoregular polymers. This

seems to be of increasing importance due to the very fast

developments in the field of nanotubes, nanorods and nano-

wires. These 1-periodic objects originate from solids, but their

symmetry elements may include rotation axes of arbitrary

order.

2. Notations and basic definitions

Line groups, being discrete subgroups of the Euclidean group

E3 ¼ R
3
� Oð3Þ, are divided into two classes: commensurate

and incommensurate (Damnjanović & Milosěvić, 2010). By

definition, commensurate line groups are discrete symmetry

groups of three-dimensional objects translationally periodic

along a line. Incommensurate line groups contain transfor-

mations ðC’jf Þ with rotation angles ’ that are not commen-

surate with �. In the present work, only commensurate line

groups are considered. Normally the z axis is chosen as

a line-group principal axis and with such a convention

subgroups of pure translations are of the form TðaÞ ¼

fðejnð0; 0; aÞÞ : n 2 Zg. Here a is a translation period defined

as a smallest positive real number such that ðejð0; 0; aÞÞ

belongs to the group under consideration. With some abuse of

the notation for elements of TðaÞ, the symbol ðejaÞ instead of

ðejð0; 0; aÞÞ will be used. The symbol T will be used for the

discrete group of pure translations along the z axis when

a ¼ 1.

From the definition of commensurate line groups it imme-

diately follows that any such group can be included in short

exact sequences 0! TðaÞ ! L! G! 1, where G is a finite

point group (called isogonal). For the classification of short

exact sequences [or, in other terminology, extensions of G by

TðaÞ] there exists a general procedure based on the cohomo-
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logical theory of group extensions (Brown, 1982). For

commensurate line groups such a classification can be

performed in full analogy with the classification of space

groups (Asher & Janner, 1965, 1968; Mozrzymas, 1974).

However, the relatively simple structure of line groups allows

one to suggest less general but simpler classification methods.

One such method is based on the generalization of the notion

of semi-direct group products and is outlined in Šijački et al.

(1972) and Vujičić et al. (1977). An alternative method

suggested in Milosěvić et al. (1997) and Damnjanović &

Milosěvić (2010) exploits elementary group-theoretical means

(with quite a bit of number theory), but embraces both

commensurate and incommensurate line groups.

It is well known that some subgroups of the group of

Euclidean transformations admit different geometric realisa-

tions. An example is the group Cnvð�Þ ¼ Cn [ ��Cn, where

�� is a reflection in the vertical plane passing through the z

axis and a line in the xy plane with the direction vector

ðcos�; sin �; 0Þ is a geometric realisation of the Cnv group

defined by the setting angle �. The setting angle is usually

taken to be equal to zero, which corresponds to choosing xz as

a benchmark reflection plane. In particular, in the theory of

line groups the setting angle is usually chosen equal to zero.

On the other hand, groups Cn stipulate a unique geometric

realisation as soon as the axis and direction of rotations are

chosen. Rod groups, being a special case of the line groups,

arise as 1-periodic subgroups of space groups, and it comes as

no surprise that space groups may contain different geometric

realisations of the same line group. In crystallography

different realisations of the same rod group are called settings.

In the theory of line groups crystallographic settings manifest

themselves as geometric realisations with specially chosen

setting angles. Besides infinitely many geometric realisations

of line groups containing reflections in vertical planes or

Umklapp transformations, there exist realisations that differ

in the choice of a horizontal reflection plane. For example,

instead of the point group Cnh ¼ Cn [ �hCn it is possible to

take the group C0nh ¼ Cn [ ð�hja=2ÞCn, which corresponds to

selecting as the reflection plane the affine plane parallel to the

xy plane but passing through the point ð0; 0; a=4Þ.

As we already mentioned, the rod groups are distinguished

among general line groups by the orders q of the principal

axes of the isogonal groups, which can take the values q = 1, 2,

3, 4, 6. For q = 3, 6 in tables of rod groups (Kopský & Litvin,

2002) the hexagonal coordinate system is used. The hexagonal

coordinate system is obtained by the rotation of the y axis

counter-clockwise by an angle of �=6 in the xy plane. The basis

vectors of the hexagonal coordinate system are connected

with the Cartesian ones by the relations

h1 ¼ e1; h2 ¼ �ð1=2Þe1 þ ð3
1=2=2Þe2; h3 ¼ e3: ð1Þ

To compare line- and rod-group realisations, one should be

able to proceed from the usual mathematical notation of affine

transformations to that accepted in crystallography (Kopský &

Litvin, 2002).

Symmetry elements (reflection planes, axes etc.) are defined

in crystallography parametrically. For example, in Cartesian

coordinates a triplet x; 0; z defines a plane as a locus

fxe1 þ ze3 : x; z 2 Rg. It is clear that the normal vector of this

plane is e2 ¼ ð0; 1; 0Þ. A triplet xþ s;�x; z defines the affine

plane fðxþ sÞe1 � xe2 þ ze3 : x; z 2 Rg passing through the

point ðs; 0; 0Þ and with the normal vector e1 þ e2 ¼ ð1; 1; 0Þ. A

triplet x;�x; 0 defines a line fxe1 � xe2 : x 2 Rg in the xy

plane. A triplet x;�x; a=4 is a line in the affine plane passing

through the point ð0; 0; a=4Þ parallel with the xy plane. The

analogous convention is used in the case where the hexagonal

coordinate system is used. For example, lines in the xy plane

having angles with the x axis of ��=3, ��=6, 0, �=6, �=3, �=2,

2�=3 and passing through the origin have the following

parametric presentation in the hexagonal coordinate system:

0; y; 0; x;�x; 0; x; 0; 0; 2x; x; 0; x; x; 0; x; 2x; 0; 0; y; 0.

Basic symmetry operations of rod groups in crystallography

have the following designations: rotation ðC�2�=nj0Þ around

the z axis is designated as n� 0; 0; z, screw rotation ðC�2�=njf Þ

as n�ðf Þ 0; 0; z, reflection ð�0j0Þ with respect to the xz plane as

m x; 0; z, reflection ð��=4j0Þ as m x; x; z, reflection ð�hj0Þ as

m x; y; 0. Glide-plane reflections of the type ð�0ja=2Þ are

designated as c x; 0; z, transformations ð�hja=2Þ as m x; y; a=4.

Umklapp transformations are interpreted as rotations: for

example, transformation ðu�=2j0Þ is designated as 2 0; y; 0, and

transformation ðu�=2ja=2Þ as 2 0; y; a=4. The notation for

transformations of the type ð�hC�2�=njf Þ is slightly more

cumbersome and not unique: operation ð�hC�2�=nj0Þ is desig-

nated as n� 0; 0; z; 0; 0; 0, and operation ð�hC�2�=nja=2Þ either

as n�ða=2Þ 0; 0; z; 0; 0; 0 or as n� 0; 0; z; 0; 0; a=4. In the

last example the ambiguity is connected with the existence

of two equivalent presentations of the transformation

under consideration: ð�hC�2�=nja=2Þ = ð�hja=2ÞðC�2�=nj0Þ =

ðC�2�=nja=2Þð�hj0Þ. Inversion at the origin is encoded as

1 0; 0; 0.

3. Different factorization of line groups

Under the standard approach, any commensurate line group

may be presented in the form

L ¼ TðaÞF; ð2Þ

where F is a finite system of coset representatives of line-

group decomposition in cosets of TðaÞ. The choice of repre-

sentatives is not unique and any specific set F is, in general, not

a subgroup of L. However, since L is the extension of G by

TðaÞ, F can be interpreted as a group with multiplication

modulo pure translations. Factorization (2) of line group L will

be referred to as standard. The Damnjanović approach

(Damnjanović & Milosěvić, 2010) is based on the factorization

L ¼ ZP; ð3Þ

where Z is a cyclic generalized translation group and P is a

finite point group. The requirement that Z contains a

subgroup of pure translations immediately implies that Z must

be of one of the following two forms:

Z ¼ Tk
qðf Þ ¼ hðC2�k=qjf Þi or Z ¼ T0ðaÞ ¼ hð�vja=2Þi; ð4Þ

where f is a fractional translation.
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If the factorization (3) is used, then the structure of line

groups may be studied in several steps. As the first step it is

reasonable to analyze the discrete point groups operating on

cylindrical surfaces. Such an analysis is not complicated and

gives seven families of the point groups which leave a cylinder

invariant (the so-called axial point groups):

Cn; S2n; Cnh; Dn; Cnv; Dnd; Dnh: ð5Þ

Then step-by-step it is necessary to consider the products ZP

to find out when each concrete product is a group, and to

ascertain that it has not occurred at previous steps, probably in

a different guise. In Table 2.2 from Damnjanović & Milosěvić

(2010) the result of such an analysis is presented: all line

groups are divided into 13 families, each family includes infi-

nitely many line groups. Among these families there are five

symmorphic ones for which factorization (3) coincides with

the standard one.

4. Rod groups as a special case of line groups

In the theory of line groups the first family, being one of the

simplest, plays nevertheless the most important role. The

reason is in the structure of axial groups P in (3): any such

group contains Cn as its subgroup and, consequently, admits

decomposition in cosets of Cn.

The main result concerning the line groups of the first

family may be formulated as follows (Damnjanović & Milo-

sěvić, 2010):

For a fixed translation period a, commensurate line groups

of the first family are parametrized by triplets ð ~qq; n; kÞ 2

N
þ
� N

þ
� K,

L ¼ Tk
~qqn

a

~qq

� �
Cn ¼ TðaÞF; ð6Þ

where K ¼ fk : 0 � k � ~qq and GCDð ~qq; kÞ ¼ 1g, GCD is the

abbreviation for the greatest common divisor and Nþ is the set

of positive natural numbers. Here

F ¼
[~qq�1

t¼0

Cð2�k=qÞt

���� a

~qq
t

� �
Cn; q ¼ ~qqn: ð7Þ

Note that, by definition, GCDðl; 0Þ ¼ 1, l ¼ 1 and, conse-

quently, k ¼ 0 corresponds to the case T0
nðaÞ ¼ TðaÞ. It is

pertinent to emphasize as well that a [for fixed ð ~qq; n; kÞ] is a

translation period of the maximal free 1-periodic subgroup

TðaÞ of the line group (6). The analogous subgroup of the

generalized group Z of translations has, in general, greater

period (Damnjanović & Milosěvić, 2010).

Line groups of the first family do not depend on the setting

angle, because their geometric realisation is uniquely defined

by the choice of the rotation axis and a convention about the

direction of rotation (normally counter-clockwise). Therefore,

each rod group of the first family should appear in the unique

setting. We consider as an example rod groups of the first

family with q ¼ 3. From equation (6) it readily follows that

q ¼ 3)

( ~qq ¼ 1 and n ¼ 3 gives line group TðaÞC3

~qq ¼ 3 and n ¼ 1 gives line groups

�
T1

3ða=3ÞC1

T2
3ða=3ÞC1

:

ð8Þ

Symmetry operations corresponding to these three cases are

F ¼

C3 ¼ f1; 3þ 0; 0; z; 3� 0; 0; zg;
C1 [ ðC2�=3ja=3ÞC1 [ ðC�2�=3j2a=3ÞC1

¼ f1; 3þða=3Þ 0; 0; z; 3�ð2a=3Þ 0; 0; zg;
C1 [ ðC�2�=3ja=3ÞC1 [ ðC2�=3j2a=3ÞC1

¼ f1; 3�ða=3Þ 0; 0; z; 3þð2a=3Þ 0; 0; zg:

8>>>><
>>>>:

ð9Þ

and, using the tables from Kopský & Litvin (2002), it is easy to

conclude that we have the rod groups p3, p31 and p32.

Line groups of the second and the third families are

symmorphic and do not depend on the setting angle.

Now let us turn to the fourth family. In this case, the

dependence on the setting angle is also absent, but relevant

geometric realisations may require a shift of the horizontal

reflection plane. The general expression for the line groups of

the fourth family in the two factorizations is

L ¼ T1
2n

a

2

� �
Cnh ¼ TðaÞF; ð10Þ

where

F ¼ Cnh

[
C�=n

���� a

2

� �
Cnh: ð11Þ

Rod groups from this family correspond to q = 2, 4, 6. To get

their standard realisation it it necessary to replace Cnh by C0nh

for q ¼ 2 and q ¼ 6. Indeed, if q ¼ 2 then

F ¼ fðej0Þ; ð�hj0Þ; ðC�ja=2Þ; ð�hC�ja=2Þg

¼ f1; m x; y; 0; 2ða=2Þ 0; 0; z; 2ða=2Þ 0; 0; z; 0; 0; 0g: ð12Þ

This realisation is not standard. Replacing Cnh by C0nh gives

F0 ¼ fðej0Þ; ð�hja=2Þ; ðC�ja=2Þ; ð�hC�j0Þg

¼ f1; m x; y; a=4; 2ða=2Þ 0; 0; z; 1 0; 0; 0g ð13Þ

and this realisation corresponds to the rod group p1121=m.

Analogous arguments lead to the conclusion that

T1
4ða=2ÞC2h ¼ p42=m and T1

6ða=2ÞC03h ¼ p63=m.

The general expression for the line groups of the fifth family

in the two factorizations is

L ¼ Tk
~qqn

a

~qq

� �
Dnð�Þ ¼ TðaÞFð�Þ; ð14Þ

where

Fð�Þ ¼
[~qq�1

t¼0

Cð2�k=qÞt

���� a

~qq
t

� �
Dnð�Þ ð15Þ

and

Dnð�Þ ¼ Cn [ ðu�j0ÞCn: ð16Þ

Here we have infinitely many geometric realisations, since the

dihedral group contains the Umklapp transformation u� ¼

�h��. Rod groups of this family appear in different settings
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only for q ¼ 3 and it is this case that will be analyzed here. We

have

q ¼ 3)

( ~qq ¼ 1 and n ¼ 3 gives line group TðaÞD3ð�Þ

~qq ¼ 3 and n ¼ 1 gives line groups

�
T1

3ða=3ÞD1ð�Þ
T2

3ða=3ÞD1ð�Þ
:

ð17Þ

In the first case ( ~qq ¼ 1 and n ¼ 3)

Fð�Þ ¼ fðej0Þ; ðC2�=3j0Þ; ðC�2�=3j0Þ; ðu�j0Þ; ðu���=3j0Þ; ðu�þ�=3j0Þg:

ð18Þ

For � ¼ 0 in hexagonal coordinates we have

Fhexð0Þ ¼ f1; 3þ 0; 0; z; 3� 0; 0; z; 2 x; 0; 0; 2 0; y; 0; 2 x; x; 0g

ð19Þ

and this is the second setting p321 of rod group No. 46.

Substitution of � ¼ �=6 into the right-hand side of equation

(18) gives

Fhex �=6ð Þ ¼ f1; 3þ 0; 0; z; 3� 0; 0; z; 2 2x; x; 0; 2 x;�x; 0;

2 x; 2x; 0g ð20Þ

and this realisation corresponds to the first setting p312 of rod

group No. 46. From equation (18) it is easy to see that the

choice of the proper setting angle is not unique: Fð0Þ ¼ Fð�=3Þ

and Fð�=6Þ ¼ Fð��=6Þ.

In the second case ( ~qq ¼ 3, n = 1 and k = 1)

Fð�Þ ¼ fðej0Þ; ðC2�=3ja=3Þ; ðC�2�=3j2a=3Þ; ðu�j0Þ;

ðu�þ�=3ja=3Þ; ðu���=3j2a=3Þg: ð21Þ

For � ¼ 0 in hexagonal coordinates we have

Fhexð0Þ ¼ f1; 3þða=3Þ 0; 0; z; 3�ð2a=3Þ 0; 0; z; 2 x; 0; 0;

2 x; x; a=6; 2 0; y; a=3g; ð22Þ

but this realisation is not found in Kopský & Litvin (2002).

The standard realisations correspond to � ¼ �=3 and

� ¼ �=6:

Fhexð�=3Þ ¼ f1; 3þða=3Þ 0; 0; z; 3�ð2a=3Þ 0; 0; z; 2 x; x; 0;

2 0; y; a=6; 2 x; 0; a=3g; ð23aÞ

Fhexð�=6Þ ¼ f1; 3þða=3Þ 0; 0; z; 3�ð2a=3Þ 0; 0; z; 2 2x; x; 0;

2 x; 2x; a=6; 2 x;�x; a=3g: ð23bÞ

These two sets of transformations correspond to the settings

p3121 and p3112, respectively (rod group No. 47).

In exactly the same manner the third case ( ~qq ¼ 3, n = 1

and k = 2) is analyzed to give T2
3ða=3ÞD1ð�=3Þ ¼ p3221 and

T2
3ða=3ÞD1ð�=6Þ ¼ p3212 (rod group No. 48).

Realisations of rod groups of the fifth family with q = 1, 2, 4,

6 correspond to the setting angle � ¼ 0.

Line groups of the sixth family are symmorphic and it is

easy to ascertain that standard realisations correspond to

� ¼ �=2 for q = 1 (rod group pm11), � ¼ 0 for q = 2 (rod

group pmm2), � ¼ 0; �=6 for q = 3 (settings p31m and p3m1,

respectively), and � ¼ 0 for q = 4, 6 (rod groups p4mm and

p6mm).

Line groups of the seventh family, being nonsymmorphic,

are organized nevertheless in a way analogous to that of the

sixth family. Standard realisations of the corresponding rod

groups are obtained from the groups of the sixth family simply

by replacing m by c in each group symbol.

Now let us consider line groups of the eighth family:

L ¼ T1
2n

a

2

� �
Cnvð�Þ ¼ TðaÞFð�Þ; ð24Þ

where

Fð�Þ ¼ Cnvð�Þ
[

C�=n

���� a

2

� �
Cnvð�Þ: ð25Þ

Relevant rod groups correspond to q = 2, 4, 6. We have

Fð�Þ ¼

fðej0Þ; ð��j0Þ; ðC�ja=2Þ; ð��þ�=2ja=2Þg for q ¼ 2;
fðej0Þ; ðC�j0Þ; ð��j0Þ; ð����=2j0Þ; ðC�=2ja=2Þ;
ðC��=2ja=2Þ; ð��þ�=4ja=2Þ; ð����=4ja=2Þg for q ¼ 4;
fðej0Þ; ðC2�=3j0Þ; ðC�2�=3j0Þ; ð��j0Þ; ð����=3j0Þ;
ð���2�=3j0Þ; ðC�=3ja=2Þ; ðC�ja=2Þ; ðC��=3ja=2Þ;
ð��þ�=6ja=2Þ; ð����=6ja=2Þ; ð����=2ja=2Þg for q ¼ 6:

8>>>>>><
>>>>>>:

ð26Þ

For q = 2 and � ¼ 0 the standard rod-group realisation is not

found in the tables of Kopský & Litvin (2002) but � ¼ �=2

readily gives rod group pmc21. For q = 4 the setting angle

� ¼ 0 gives the second setting p42mc of rod group No. 35, and

� ¼ �=4 gives the first setting p42cm of this group. For q = 6 we

have T1
6ða=2ÞC3vð0Þ ¼ p63cm and T1

6ða=2ÞC3vð�=6Þ ¼ p63mc,

the second and the first settings of rod group No. 70, respec-

tively.

Line groups of the ninth family are symmorphic and Fð�Þ
¼ Dndð�Þ = Cn [ ð��j0ÞCn [ ð�hC�=nj0ÞCn [ ðu�þ�=2nj0ÞCn. Rod

groups correspond to q = 1, 2, 3 and

Fð�Þ ¼

fðej0Þ; ð��j0Þ; ðIj0Þ; ðu�þ�=2j0Þg for q ¼ 1;
fðej0Þ; ðC�j0Þ; ð��j0Þ; ð����=2j0Þ; ð�hC�=2j0Þ;
ð�hC��=2j0Þ; ðu�þ�=4j0Þ; ðu���=4j0Þg for q ¼ 2;
fðej0Þ; ðC2�=3j0Þ; ðC�2�=3j0Þ; ð��j0Þ; ð����=3j0Þ;
ð��þ�=3j0Þ; ð�hC�=3j0Þ; ðIj0Þ; ð�hC��=3j0Þ;
ðu�þ�=6j0Þ; ðu���=6j0Þ; ðu�þ�=2j0Þg for q ¼ 3:

8>>>>>><
>>>>>>:

ð27Þ

The line-group realisation with q = 1 and � ¼ �=2 corresponds

to the rod group p2=m11. For q = 2 and � ¼ 0; �=4 we have the

second (p4m2) and the first (p42m) setting of rod group No.

37, respectively. For q = 3 setting angles � ¼ 0; �=6 of line

group TðaÞDnd give rod group No. 51 settings p31m and p3m1.

Family ten contains non-symmorphic line groups

L ¼ T0
a

2

� �
S2nð�Þ ¼ TðaÞFð�Þ; ð28Þ

where

Fð�Þ ¼ S2n

[
��

���� a

2

� �
S2n: ð29Þ

Rod groups from this family correspond to q = 1, 2, 3 and
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Fð�Þ ¼

fðej0Þ; ðIj0Þ; ð��ja=2Þ; ðu���=2ja=2Þg for q ¼ 1;
fðej0Þ; ð�hC�=2j0Þ; ðC�j0Þ; ð�hC��=2j0Þ; ð��ja=2Þ;
ðu���=4ja=2Þ; ð����=2ja=2Þ; ðu�þ�=4ja=2Þg for q ¼ 2;
fðej0Þ; ð�hC�=3j0Þ; ðC2�=3j0Þ; ðIj0Þ; ðC�2�=3j0Þ;
ð�hC��=3j0Þ; ð��ja=2Þ; ðu���=6ja=2Þ; ð����=3ja=2Þ;
ðu���=2ja=2Þ; ð��þ�=3ja=2Þ; ðu�þ�=6ja=2Þg for q ¼ 3:

8>>>>>><
>>>>>>:

ð30Þ

The standard realisations are p2=c11 for q ¼ 1; � ¼ �=2, p4c2

and p42c for q = 2, � ¼ 0; �=4, and p31c, p4c1 for q = 3,

� ¼ 0; �=6.

Family 11 contains symmorphic line groups with

Fð�Þ ¼ Dnhð�Þ ¼ Cn

[
ð��j0ÞCn

[
ð�hj0ÞCn

[
ð u�j0ÞCn:

ð31Þ

Here for q = 1, 2, 4, 6 the setting angle � ¼ 0 gives the rod

groups p2mm, pmmm, p4=mmm and p6=mmm. For q = 3 the

first setting p6m2 of rod group No. 71 corresponds to the angle

� ¼ �=6, the second setting p62m corresponds to � ¼ 0.

Line groups of family 12 are non-symmorphic and are of the

following general form:

L ¼ T0
a

2

� �
Cnhð�Þ ¼ TðaÞFð�Þ; ð32Þ

where
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Table 1
Rod groups (international and factorized notation) listed by families F of the line groups according to the order q of the principal axis of the
corresponding isogonal group.

F q = 1 q = 2 q = 3 q = 4 q = 6

1 1 TC1 ¼ p1 8 TC2 ¼ p112 42 TC3 ¼ p3 23 TC4 ¼ p4 53 TC6 ¼ p6

9 T2C1 ¼ p1121 43 T3C1 ¼ p31 24 T4C1 ¼ p41 54 T6C1 ¼ p61

44 T2
3C1 ¼ p32 25 T4C2 ¼ p42 55 T6C2 ¼ p62

26 T3
4C1 ¼ p43 56 T6C3 ¼ p63

57 T2
6C2 ¼ p64

58 T5
6C1 ¼ p65

2 2 TS2 ¼ p1 27 TS4 ¼ p4 45 TS6 ¼ p3

3 10 TC1h ¼ p11m 11 TC2h ¼ p112=m 59 TC3h ¼ p6 28 TC4h ¼ p4=m 60 TC6h ¼ p6=m

4 12 T2C1h ¼ p1121=m 29 T4C02h ¼ p42=m 61 T6C03h ¼ p63=m

5 3 ½TD1�ð0Þ ¼ p211 13 ½TD2�ð0Þ ¼ p222 46 ½TD3�ð0Þ ¼ p321 30 ½TD4�ð0Þ ¼ p422 62 ½TD6�ð0Þ ¼ p622

14 ½T2D1�ð0Þ ¼ p2221 ½TD3�ð�=6Þ ¼ p312 31 ½T4D1�ð0Þ ¼ p4122 63 ½T6D1�ð0Þ ¼ p6122

47 ½T3D1�ð�=3Þ ¼ p3112 32 ½T4D2�ð0Þ ¼ p422 64 ½T6D2�ð0Þ ¼ p6222

½T3D1�ð�=6Þ ¼ p3121 33 ½T3
4D2�ð0Þ ¼ p4322 65 ½T6D3�ð0Þ ¼ p6322

48 ½T2
3D1�ð�=6Þ ¼ p3212 66 ½T2

6D2�ð0Þ ¼ p6422

½T2
3D1�ð�=3Þ ¼ p3221 67 ½T5

6D1�ð0Þ ¼ p6522

6 4 ½TC1v�ð�=2Þ ¼ pm11 15 ½TC2v�ð0Þ ¼ pmm2 49 ½TC3v�ð0Þ ¼ p31m 34 ½TC4v�ð0Þ ¼ p4mm 68 ½TC6v�ð0Þ ¼ p6mm

½TC3v�ð�=6Þ ¼ p3m1

7 5 ½T0C1�ð�=2Þ ¼ pc 16 ½T0C2�ð0Þ ¼ pcc2 50 ½T0C3�ð0Þ ¼ p31c 36 ½T0C4�ð0Þ ¼ p4cc 69 ½T0C6�ð0Þ ¼ p6cc

½T0C3�ð�=6Þ ¼ p3c1

8 17 ½T2C1v�ð�=2Þ ¼ pmc21 35 ½T4C2v�ð�=4Þ ¼ p42cm 70 ½T6C3v�ð0Þ ¼ p63cm

½T4C2v�ð0Þ ¼ p42mc ½T6C3v�ð�=6Þ ¼ p63mc

9 6 ½TD1d�ð�=2Þ ¼ p2=m11 37 ½TD2d�ð0Þ ¼ p4m2 51 ½TD3d�ð0Þ ¼ p31m

½TC2d�ð�=4Þ ¼ p42m ½TC3d�ð�=6Þ ¼ p3m1

10 7 ½T0S2�ð�=2Þ ¼ p2=c11 38 ½T0S4�ð0Þ ¼ p4c2 52 ½T0S6�ð0Þ ¼ p31c

½T0S4�ð�=4Þ ¼ p42c ½T0S6�ð�=6Þ ¼ p3c1

11 18 ½TD1h�ð0Þ ¼ p2mm 20 ½TD2h�ð0Þ ¼ pmmm 71 ½TD3h�ð0Þ ¼ p62m 39 ½TD4h�ð0Þ ¼ p4=mmm 73 ½TD6h�ð0Þ ¼ p6=mmm

½TD3h�ð�=6Þ ¼ p6m2

12 19 ½T0C1h�ð0Þ ¼ p2cm 21 ½T0C2h�ð0Þ ¼ pccm 72 ½T0C3h�ð0Þ ¼ p62c 40 ½T0C4h�ð0Þ ¼ p4=mcc 74 ½T0C6h�ð0Þ ¼ p6=mcc

½T0C3h�ð�=6Þ ¼ p6c2

13 22 ½T2D01h�ð�=2Þ ¼ pmcm 41 ½T4D2h�ð0Þ ¼ p42=mmc 75 ½T6D03h�ð0Þ ¼ p63=mcm

½T4D2h�ð�=4Þ ¼ p42=mcm ½T6D03h�ð�=6Þ ¼ p63=mmc



Fð�Þ ¼ Cnh

[
��

���� a

2

� �
Cnh: ð33Þ

Here the usual line-group realisations (� ¼ 0) coincide with

the rod group ones for q = 1, 2, 4, 6. For q = 3 the first setting

p6c2 corresponds to the setting angle �=6, the second setting

p6c2 to � ¼ 0.

The last, 13th, family contains non-symmorphic line groups

of the form

L ¼ T1
2n

a

2

� �
Dnhð�Þ ¼ TðaÞFð�Þ; ð34Þ

where

Fð�Þ ¼ Dnh

[
C�=n

���� a

2

� �
Dnh: ð35Þ

Here the relevant rod groups correspond to q = 2, 4, 6 and in

the cases q = 2, 6 the horizontal reflection plane should be

shifted up by a=4:

F0ð�Þ ¼ fðej0Þ; ð��j0Þ; ð�hja=2Þ; ðu�ja=2Þ; ðC�ja=2Þ;
ð����=2ja=2Þ; ðIj0Þ; ðu�þ�=2j0Þg for q ¼ 2;

Fð�Þ ¼ fðej0Þ; ðC�j0Þ; ð��j0Þ; ð����=2j0Þ; ð�hj0Þ; ðIj0Þ;
ðu�j0Þ; ðu���=2j0Þ; ðC�=2ja=2Þ; ðC��=2ja=2Þ;
ð��þ�=4ja=2Þ; ð����=4ja=2Þ; ð�hC�=2ja=2Þ; ð�hC��=2ja=2Þ;
ðu�þ�=4ja=2Þ; ðu���=4ja=2Þg for q ¼ 4;

F0ð�Þ ¼ fðej0Þ; ðC2�=3j0Þ; ðC�2�=3j0Þ; ð��j0Þ; ð����=3j0Þ;
ð��þ�=3j0Þ; ð�hja=2Þ; ð�hC2�=3ja=2Þ; ð�hC�2�=3ja=2Þ;
ðu�ja=2Þ; ðu���=3ja=2Þ; ðu�þ�=3ja=2Þ; ðC�=3ja=2Þ;
ðC�ja=2Þ; ðC��=3ja=2Þ; ð��þ�=6ja=2Þ; ð����=2ja=2Þ;
ð�hC�=3j0Þ; ðIj0Þ; ð�hC��=3j0Þ; ðu�þ�=6j0Þ; ðu���=6j0Þ;
ðu�þ�=2j0Þg for q ¼ 6:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð36Þ

For q = 2 to get the standard realisation pmcm we must take

� ¼ �=2 and shift the horizontal reflection plane up by a=4.

For q = 4 two settings, p42=mmc and p42=mcm, are obtained

for � ¼ 0 and � ¼ �=4, respectively. For q = 6 to get the

standard realisations of the rod groups it is necessary to shift

the horizontal reflection plane and take � ¼ 0; �=6 (settings

p63=mcm and p63=mmc, respectively).

In Table 1 the exact correspondence between the rod

groups and the relevant realisations of line groups is presented

in a compact form.

5. Orbits with respect to line and rod groups

The line groups (with the z axis as the principal one) operate

on the cylindrical surface Cyl� ¼ fðx; y; zÞ : x2 þ y2 ¼ �2g of a

fixed radius � and the corresponding orbits also lie on this

surface. It is convenient to introduce the notation

x�ð�þ �; zÞ ¼ ð� cosð�þ �Þ; � sinð�þ �Þ; zÞ for a general

point belonging to Cyl�, where � is the setting angle and the

angle � is used for the parametrization of the set of equivalent

orbits (along with the z coordinate).

L-orbits and their types do not depend on the line-group

factorization. But there exist in a certain sense minimal sets of

representatives of the line-group orbits which (i) uniquely

define the orbit type, and (ii) can be used for easy generation

of the whole L-orbit, and these sets may depend on the line-

group factorization. It is clear that F-orbits can play the role of

such sets of representatives in the case when the standard

factorization is used. If the factorization (3) is exploited, then,

as was shown by Damnjanović & Milosěvić (2010), either P- or

Pþ-orbits satisfy the aforementioned requirements (i) and (ii)

in almost all situations. Here Pþ is a subgroup of the isogonal

group P formed by the orthogonal transformations leaving

unchanged the z coordinate of any point. Ambiguity may arise

in the case when the type of PðPþÞ-orbit depends on the parity

of n, but the corresponding L-orbits turn out to be equivalent

for all values of n.

It is easy to see that PðPþÞ-orbits are always the subsets of

the corresponding F-orbits. The major difference between

them is the following. The L-orbit is obtained from the

corresponding F-orbit by application to its points all possible

pure translations along the z axis. If the factorization (3) is

used, then either the screw-axis group or the glide-plane group

must be applied to the points of the PðPþÞ-orbit to get the

whole L-orbit.

As an example, we consider orbits with respect to the line

group T1
4C2v from the eighth family corresponding to rod

group No. 35.

According to Damnjanović & Milosěvić (2010), on the

cylindrical surface of a fixed radius there is a 2-parametric set

of equivalent C2vð�Þ-orbits of length 4, two 1-parametric sets

of non-equivalent orbits of length 2, and a 1-parametric set of

single point orbits situated on the z axis:

C2vð�Þx�ð�þ �; zÞ ¼ fx�ð�� �; zÞ; x�ð�þ �� �; zÞg

ðline group label a1Þ; ð37aÞ

C2vð�Þx�ð�; zÞ ¼ fx�ð�; zÞ; x�ð�þ �; zÞg

ðline group label b1Þ; ð37bÞ

C2vð�Þx�ð�þ �=2; zÞ ¼ fx�ð�þ �=2; zÞ; x�ð�þ 3�=2; zÞg

ðline group label c1Þ; ð37cÞ

C2vð�Þð0; 0; zÞ ¼ fð0; 0; zÞg

ðline group label d1Þ ð37dÞ

and the screw axis group T1
4ða=2Þ ¼ hðC�=2ja=2Þi must be

applied to the points of each of these orbits to generate the

whole line-group orbits.

The orbits with respect to Fð�Þ ¼ C2vð�Þ [ ðC�=2ja=2ÞC2vð�Þ
are

Fð�Þx�ð�þ �; zÞ ¼ fx�ð�� �; zÞ; x�ð�þ �� �; zÞ;

x�ð�þ �=2� �; zþ a=2Þ; x�ð�þ 3�=2� �; zþ a=2Þg

ðstandard type cÞ; ð38aÞ

Fð�Þx�ð�; zÞ ¼ fx�ð�; zÞ; x�ð�þ �; zÞ; x�ð�þ �=2; zþ a=2Þ;

x�ð�þ 3�=2; zþ a=2Þg

ðstandard type bÞ; ð38bÞ
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Fð�Þx�ð�þ �=2; zÞ ¼ fx�ð�þ �=2; zÞ; x�ð�þ 3�=2; zÞ;

x�ð�; zþ a=2Þ; x�ð�þ �; zþ a=2Þg

ðstandard type bÞ; ð38cÞ

Fð�Þð0; 0; zÞ ¼ fð0; 0; zÞ; ð0; 0; zþ a=2Þg

ðstandard type aÞ: ð38dÞ

The corresponding rod group appears in two settings

(Kopský & Litvin, 2002): p42cmð� ¼ �=4Þ and p42mcð� ¼ 0Þ.

For � ¼ �=4 in the Cartesian coordinates after the change of

variables [ðx cos �� y sin �; x sin �þ y cos�Þ ! ðx; yÞ for the

orbits of the standard type c and x cos �! x for the orbits of

the standard type b] the corresponding Fð�=4Þ-orbits have the

following standard form:

Fð�=4Þðx; y; zÞ ¼ fðx; y; zÞ; ðy; x; zÞ; ð�y; x; zþ a=2Þ;

ð�x; y; zþ a=2Þ; ð�x;�y; zÞ; ð�y;�x; zÞ;

ðy;�x; zþ a=2Þ; ðx;�y; zþ a=2Þg

ðline group label a1; standard label cÞ; ð39aÞ

Fð�=4Þðx; x; zÞ ¼ fðx; x; zÞ; ð�x; x; zþ a=2Þ; ð�x;�x; zÞ;

ðx;�x; zþ a=2Þg

ðline group label b1; standard label bÞ; ð39bÞ

Fð�=4Þð�x; x; zÞ ¼ fð�x; x; zÞ; ðx;�x; zÞ; ð�x;�x; zþ a=2Þ;

ðx; x; zþ a=2Þg

ðline group label b1Þ; ð39cÞ

Fð�=4Þð0; 0; zÞ ¼ fð0; 0; zÞ; ð0; 0; zþ a=2Þg

ðline group label d1; standard label aÞ: ð39dÞ

Here two sets of equivalent orbits of type b with the repre-

sentatives ðx; x; zÞ and ð�x; x; zÞ are parametrized by two

parameters x; z and the expression (39b) embraces both sets.

Indeed, since the parameters x; z are supposed to be free, the

replacement x!�x; z! zþ a=2 applied to the right-hand

side of equation (39b) gives the orbit (39c).

In exactly the same manner the case � ¼ 0 can be treated.

6. Conclusion

The notion of a setting angle that defines specific geometric

realisations of line groups is introduced. This notion turns out

to be useful in the case where a line group contains Euclidean

transformations that include as their orthogonal parts either

reflections in vertical planes or Umklapp operations. Intro-

duction of a setting angle leads to the appearance of contin-

uous series of line groups of families 5–13. A thorough analysis

of the crystallographic settings of the rod groups and the

appropriate geometric realisations of relevant line groups is

performed. This analysis results in establishing the explicit

correspondence between rod-group settings and the corre-

sponding line groups. More general and detailed descriptions

of the interrelation between the rod- and line-group orbits will

be considered in a subsequent publication.
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